两条直线的位置关系
两条直线的位置关系
时要坚持启发式的教学思想,重点放在思路的探求和结论或公式的运用上.本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能熟练地掌握公式,增强学生动手计算的能力.本节还要加强根据已知条件求直线方程的教学.
4.不仅要使学生熟悉用斜率求两直线夹角的公式,也要掌握根据直线方程系数求夹角的方法(即教材中例6的方法),同时会根据所给条件选用.
5.已知两直线的方程会求其交点即可,不必研究两直线方程系数与位置关系之间的关系.
6.在学习点到直线距离公式时,可利用课余时间发动学生寻找更多的推导公式的方法,并通过寻找多种推导公式的方法,锻炼思维,培养能力.
7.本节学完以后学生可以解决很多较复杂、较综合的问题,如对称问题、直线系过定点问题、光路最短与足球射门角度最大等最值问题.教学中应适当安排一些这样的内容,以训练学生思维和培养学生分析问题、解决问题的能力.
教学设计方案
课题:点到直线的距离
教学目标:(1)理解点到直线距离公式的推导过程.
(2)会求点到直线的距离.
(3)在探索点到直线距离公式推导思路的过程中,培养学生发散思维、积极探索的精神.
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
一、引入
点到直线的距离是指过点 作 的垂线, 与垂足 之间的长度
【问题1】已知点 (-1,2)和直线 : ,求 点到直线 的距离.
(由学生分析、解答)
分析:先求出过 点和 垂直的直线:
: ,再求出 和 的交点
∴
如果把问题1一般化就有如下问题:
【问题2】已知: 和直线 : ( 不在直线 上,且 , ),试求 点到直线 的距离.
二、点到直线距离
分析1:要求 的长度可以象问题1的解法一样,利用两点的距离公式可以求 的长度.
∵ 点坐标已知,∴只要求出 点坐标就可以了.
又∵ 点是直线
www.nx899.com和直线 的交点
又∵直线 的方程已知
∴只要求出直线 的方程就可以了.
即: ← 点坐标←直线 与直线 的交点←直线 的方程←直线 的斜率←直线 的斜率
(这一解法在课前由学生自学完成,课上进行评价总结)
问:这种解法好不好,为什么?
根据学生讨论,教师适时启发、引导,得出
分析2:如果 垂直坐标轴,则交点和距离都容易求出,那么不妨做出与坐标轴垂直的线段 和 ,如图1所示,显然相对而言 ,和 好求一些,事实上,设 到直线的距离为 , 坐标为 , 坐标为 ,则易求:
,
所以: ,
所以:
根据三角形面积公式:
所以: (至此问题2已经解决)
公式 的完善.
容易验证(由学生完成):
当 ,即 轴时,公式成立;
当 ,即 轴时,公式成立;
当 点在 上时,公式成立.
公式 结构特点
师生一起总结:
(1)分子是 点坐标代入直线方程;
(2)分母是直线未知数 、 系数平方和的算术根.
类似于勾股定理求斜边的长
三、检测与巩固
练习1
(1) 到直线 的距离是________.
(2) 到直线 的距离是_______.
(3)用公式解 到直线 的距离是______.
(4) 到直线 的距离是_________.
订正答案:(1)5;(2)0;(3) ;(4) .
练习2
1.求平行直线 和 的距离.
解:在直线 上任取一点,如 ,则两平行线的距离就是点 到直线 的距离.
因此, = =
【问题3】
两条平行直线的距离是否有公式可以推出呢?求两条平行直线 与 0的距离.
解:在直线上 任取一点,如
则两平行线的距离就是点 到直线 的距离,(如图2).
因此, = =
注意:用公式时,注意一次项系数是否一致.
四、小结作业
1、点到直线的距离公式及其推导;
师生一起总结点到直线距离公式的推导过程:
2、利用公式求点到直线的距离
,两条直线的位置关系- ·上一篇:数学教学设计-用整十数乘
- ·下一篇:数学免费教学设计-分类
相关分类
高二数学教案 推荐
- · 一个数乘以小数2
- · 函数的图象(二)
- · 北师大版数学(七年级上)生活中的图形(一)
- · §1.6.1逻辑联结词(1)
- · 积的近似值
- · 圆的方程
- · 直线的方程
- · 课 题:1.1集合
- · 不等式的性质(二)
- · 数学教学设计-不等式的性质(一)
- · 数学教学设计-不等式的证明(二)
- · 一节习题课的尝试
- · “预设”与“生成”不是“你死我活”
- · 对话、建构、熏陶
- · 字母能表示什么
- · 数学教学设计-双曲线的几何性质
- · 不等式的性质2
- · 不等式的性质1
- · “转圈”中的数学
- · 不等式的证明(三)